网站地图 原创论文网,覆盖经济,法律,医学,建筑,艺术等800余专业,提供60万篇论文资料免费参考
主要服务:论文发表、论文修改服务,覆盖专业有:经济、法律、体育、建筑、土木、管理、英语、艺术、计算机、生物、通讯、社会、文学、农业、企业

单增李斯特菌进化家系的特点与分型方法

来源:原创论文网 添加时间:2021-01-19

  摘    要: 单增李斯特菌是危害严重的食源性致病菌之一,作为一种兼性厌氧的革兰氏阳性短杆菌,广泛存在于食品、环境及动物宿主体内。根据分子特征和流行情况的不同,可将其分成4个进化家系,不同家系的菌株毒力和致病性各不相同。本文分析归纳了单增李斯特菌不同进化家系的特点,总结概述了致病性和流行特征等,以期为研究与菌株家系有关的食源性疾病提供一定参考。

  关键词: 单增李斯特菌; 家系; 致病性; 差异;

  Abstract: Listeria monocytogenes is one of the most harmful food-borne pathogens. As a facultative anaerobic gram-positive bacterium, it is widely present in food, environment and animal hosts. According to the different molecular characteristics and epidemic situation, it can be divided into four evolutionary lineages, the strains of different lineages have different virulence and pathogenicity. This article analyzes and generalizes the characteristics of different lineages of Listeria monocytogenes, and summarizes the pathogenicity and epidemic characteristics, etc., in order to provide a certain reference for the research of food-borne diseases related to strain lineages.

  Keyword: Listeria monocytogenes; lineages; pathogenicity; difference;

  单增李斯特菌(Listeria monocytogenes,LM)是一种胞内兼性厌氧的可对人类健康造成严重危害的食源性致病菌[1]。其分布广泛,食品(乳及乳制品,生、熟肉类,蛋类,即食食品,水果蔬菜等)[2,3],食品加工、储存设备(设备表面,管道,生产环境和冰箱)[4,5],自然环境(土壤,污水)[6]和动物宿主(哺乳动物,非哺乳动物)细胞中均有分离获得该菌的报道[7]。单增李斯特菌可在低pH值(3.3-4.2)、低温、高盐浓度(0.5%-1.2%)和高压下存活[8],易感人群为幼童(young)、老年人(old)、孕妇(pregnant)和免疫功能缺陷人群(immune-compromised people),也被简称为“YOPI”[8]。感染后,住院率(92%)和死亡率(20%-30%)较高[9]。

  根据菌体抗原(O)和鞭毛抗原(H)的血清凝集试验,可以将单增李斯特菌分成13个血清型(1/2a,1/2b,1/2c,4b,3a,3b,3c,4a,4c,4e,4ab,4d和7)[10,11]。不同血清型菌株的致病性存在差异,从临床病例和受污染的食品中分离得到的菌株至少95%以上属于血清型1/2a、1/2b、1/2c、4b[12,13],其中1/2a和1/2b血清型菌株通常为食品分离株[11,14,15]。血清型4b菌株在临床患者标本中常见[16],李斯特菌病中约有50%的病例是由4b血清型菌株感染所致。血清型1/2和4b菌株致病性的差异,有研究认为可能与菌株细胞的壁磷壁酸(wall teichoic-acid,WTA)组成及其聚合物结构不同有关[17]。依据表型特征和基因分型方法,可以将单增李斯特菌分成4个进化家系,家系Ⅰ和家系Ⅱ菌株的来源种类和数量最多,而家系Ⅲ较少,家系Ⅳ则较为罕见[18]。家系Ⅰ菌株包含6种血清型(1/2b,4b,3b,4e,4d和7),家系Ⅱ菌株包含4种血清型(1/2a,1/2c,3a和3c),家系Ⅲ和Ⅳ包含的血清型为4b,4a和4c[14],4b血清型菌株在家系Ⅰ、Ⅲ和Ⅳ中均有发现[19]。菌株进化家系研究通常会结合菌株的血清型(serotypes)、血清组(serogroups)、流行克隆(epidemic clones,ECs)、毒力类型(virulence types,VTs)、克隆复合体(clonal complexes,CCs)和序列类型(sequence types,STs)[20],以研究比较菌株在系统发育、遗传多样性、生态位和致病性方面的异同点。不同家系的菌株致病性和宿主特异性不同,对人类健康的威胁程度也不同,在一些流行病学研究中,需要对单增李斯特菌进化家系进行鉴别,为食品安全的评估、可能的感染暴发提供科技支撑。本文对单增李斯特菌进化家系的划分依据、不同家系的特点、流行特征、检测方法等进行了归纳总结,希望能为研究与菌株家系有关的李斯特菌病提供一定参考。
 

单增李斯特菌进化家系的特点与分型方法
 

  1、 单增李斯特菌进化家系划分

  单增李斯特菌最初的“家系”相关划分源于多位点酶电泳(multilocus enzyme electrophoresis,MEE)显示不同电泳簇(ET)结果和菌株血清型分布不一致[21],为进一步寻找分离株之间的潜在关系而引入“进化家系”的概念。“家系(Lineages)”名称的正式使用是在1997年,研究人员利用核糖体分型和3种毒力基因hly、actA和inlA将133株单增李斯特菌划分为家系Ⅰ和家系Ⅱ,且对核糖体片段和16S rRNA基因序列的分析中首次确定菌株另外一种独特家系的存在即家系Ⅲ[22]。基于家系Ⅲ菌株所呈现的独特性质和非典型性状,Roberts等[23]采用EcoRⅠ核糖分型和hly基因的PCR-限制性酶切长度多态性(PCR-restriction length polymorphism,PCR-RFLP)对46株家系Ⅲ菌株进行分析,系统发育研究证明了家系Ⅲ存在3种亚系(ⅢA,ⅢB和ⅢC)[24]。家系Ⅳ的正式划分是在2008年,Ward等[25]利用多位点基因分型(multilocus genotyping,MLGT)方法,建立系统发育树说明家系Ⅳ菌株独立于家系Ⅲ。至此,明确了单增李斯特菌可划分为4种不同的进化家系[26](表1)。菌株家系的划分既可以明确分离株之间的相关关系,为菌株的系统发育和致病性研究提供是思路,也可以作为菌株溯源和表达菌株生态位关系的依据。

  表1 单增李斯特菌的家系划分及其包含的血清型和致病性
表1 单增李斯特菌的家系划分及其包含的血清型和致病性

  注:表中首次分型时间和方法以文中有明显家系关键词为依据。PCR-RFLP:PCR-限制性酶切长度多态性;MLGT:多位点基因分型。

  2 、单增李斯特菌进化家系的特点

  2.1、 单增李斯特菌进化家系表型差异

  单增李斯特菌分离株遗传特性的不同导致了菌株表型差异。不同家系菌株在生长速率、毒力相关表型、生物膜形成能力、对NaCl的耐受能力[28]、产细菌素的能力[29]以及对食品的污染等方面均存在差异。这些差异可为食品加工条件的设定、菌株的生态位关系表征及初步判断菌株毒力强弱提供了部分依据和基础。

  不同家系菌株表型差异首先表现在菌株生长速率和对食品的污染方面,在菌株生长速率研究中,不同家系菌株在不同的培养温度和培养基中的生长速率有所不同,其中37℃、含有6% NaCI的BHI培养基中家系Ⅰ和Ⅲ菌株的生长速率明显高于家系Ⅱ[20,30]。特定培养环境造成菌株生长速率改变的同时一定程度上影响着菌株对食品的污染和对动物、人类的侵袭,不同处理方法下菌株对食品的污染能力不同,在高压和温热下,家系Ⅰ菌株对食品的污染能力高于家系Ⅱ[31]。此外,在多种胁迫条件下家系Ⅱ菌株的生长和存活能力显着高于家系Ⅰ[32,33]。

  菌株对细胞的污染和侵袭程度与细菌在细胞表面的生物膜形成相关[34],研究显示家系Ⅱ菌株比家系Ⅰ更易生成生物膜[35],同时家系Ⅱ菌株生物膜胞外基质中含有更多的胞外DNA[36,37]。胞外基质对细菌的黏附和定殖至关重要,发生定殖而溶解目标细胞的李斯特菌溶血素(LLS)多产生于家系Ⅰ而非家系Ⅱ菌株[29]。借助原子力显微镜研究细菌黏附,家系Ⅱ菌株与家系Ⅰ相比,其总体黏附力较高但特异性力(氢键)和非特异性力(范德华力和静电作用力)较低,并且表现出了更高的杨氏模量和更长更硬的生物聚合物[38,39]。

  细菌成斑实验和溶脂表型可为菌株毒力强弱的测定提供初步依据,不同家系菌株形成的噬菌斑、空斑大小和成斑率以及溶脂性现象等毒力相关表型均表现出不同。在噬菌斑成斑实验中,家系Ⅱ菌株的成斑率低于家系Ⅰ和Ⅲ的同时显示出更小的噬菌斑[22]。类似的,家系Ⅰ和家系Ⅱ菌株相较于家系Ⅲ能形成更大的空斑[40]。相比于家系Ⅰ和家系Ⅱ的分离株,家系Ⅲ菌株在卵黄琼脂平板上表现出更强的溶脂活性[40]。

  2.2、 单增李斯特菌进化家系基因组差异

  菌株在基因组水平上的差异源于基因特异性研究,不同家系菌株的基因组差异主要体现在基因含量、基因突异、基因重组和基因表达等方面。

  菌株的基因组差异首先表现在基因含量上,利用多种基因组分析工具发现家系Ⅰ和家系Ⅱ菌株基因含量存在差异,这种差异除前噬菌体数目,编码蛋白质的伪基因个数和菌株特异性基因外[41],还包括毒力基因,应激反应基因和代谢相关的基因。使用RPKM(reads per kilobase per million mapped)发现家系Ⅱ菌株比家系Ⅰ缺少编码膜相关蛋白的167个基因[42]。Chen等[43]发现参与编码菌株精氨酸脱亚氨酶和胍丁胺脱亚氨酶系的部分基因簇在家系Ⅰ和家系Ⅱ及大部分家系Ⅳ菌株中存在,但在家系Ⅲ和少部分家系Ⅳ菌株则缺乏。对于4种不同家系菌株的基因组差异,菌株毒素-抗毒素系统的14个等位基因同样显示明显的差别[44]。与毒力基因相关的家系差异还包括菌株致病岛(LIPI-3和 LIPI-4)组成基因[45],其中LIPI-3主要存在于家系Ⅰ分离株[46]。除基因含量的差异外,单核苷酸多态性(SNP)、转座因子和基因缺失[29,47] 等基因突变是基因组水平上最常见的差异。Zhang等[48] 通过Python编程语言对菌株基因组数据挖掘后,找到多个可以区分家系I、Ⅱ、Ⅲ菌株的特定SNP的候选基因。在基因突变中较为罕见的毒力决定簇PrfA的移码及错义突变使得家系Ⅰ和家系Ⅱ菌株的毒力降低[49]。此外,水平基因转移现象也能反映不同家系菌株在基因水平上的差异,在基因转移上,家系Ⅲ菌株对于家系Ⅰ和家系Ⅱ是最佳的基因供体[50]。

  不同家系菌株的进化形成与同源重组(homologous recombination)和正向选择(positive selection)密切相关[51]。菌株系统发育中的基因重组表明,家系Ⅱ菌株比家系Ⅰ更容易发生重组[50],这导致了家系Ⅱ菌株的高遗传变异性,也使得家系Ⅱ菌株更容易适应变化的生态位,进而可能影响食品及其相关生态位中家系Ⅱ和家系Ⅰ菌株的数量[52]。

  2.3 、单增李斯特菌进化家系转录组差异

  转录组研究是对基因结构和基因功能的拓展研究,不同家系菌株的转录组研究显示了菌株在噬菌体基因[53]、毒力相关基因、应激调控因子[54]和细胞壁合成[41]等方面的差异。

  在证明菌株基因组多样性的同时,不同家系菌株在毒力基因分布上存在差异,研究显示高毒力基因和低毒力基因分别分布在家系Ⅰ和家系Ⅱ菌株中[7]。在氧化剂、酸和热响应等应激反应方面的转录组研究显示,家系Ⅰ比家系Ⅱ的ST菌株显示出对氧化剂更高的应激抵抗力,同时家系Ⅱ菌株在0.6% H2O2作用下表现更为敏感[33]。Sigma B(σB)作为菌株最主要的调节因子,其对家系Ⅰ,Ⅱ和ⅢB菌株在酸和氧化应激条件下的存活起重要作用,但是对家系ⅢA菌株效果不明显[55]。此外,作为σB的替代调节因子,PrfA也影响着菌株在压力和毒性下的差异转录,菌株对胆汁的应激抵抗研究发现,家系Ⅱ菌株发生差异转录的基因要少于家系Ⅰ[56]。

  此外,Lee等[7]基于多位点序列分型(multilocus sequence typing,MLST)在转录组水平对家系Ⅰ和家系Ⅱ菌株进行比较,发现家系Ⅰ菌株显示出更高的转录组水平。

  2.4 、单增李斯特菌进化家系蛋白质组差异

  在基因组和转录组水平上的研究不足以完全体现不同家系菌株的特点,基因调控和表达的变化同样会造成不同家系菌株致病性和侵袭能力的差异[57]。不同家系菌株可在蛋白质定量表达[58]、蛋白质表达程度和蛋白质种类(核糖体蛋白种类[59]、表面蛋白)等方面体现差异。

  家系Ⅰ和家系Ⅱ菌株在蛋白组水平上的直接差异体现在蛋白质表达量上[58]。其次,使用二维凝胶电泳显示家系Ⅱ菌株的蛋白表达程度没有家系Ⅰ明显[60]。建立蛋白质种类和家系之间的联系不仅可以促进家系分型,也可以为菌株致病性研究提供帮助。Teruyo等[59]借助基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)发现不同家系(家系Ⅰ、Ⅱ、Ⅲ)的3种核糖体蛋白存在差别。对于哺乳动物所需的表面蛋白lmo0320,在家系Ⅱ中得到的概率是家系Ⅰ的2倍左右[32]。与菌株毒力相关的表面蛋白在不同家系菌株中同样存在差异[61]。这些蛋白质水平上的差异研究对于菌株致病性研究和生态位关系的确定有着积极促进作用。

  2.5、 单增李斯特菌进化家系代谢组差异

  通过对菌株细胞内源物质的动态研究发现,不同家系菌株在代谢组的差异主要分为对物质的吸收利用和分解[57]、代谢途径差异[62]和物质的分泌等方面。

  不同成分碳源物质的培养基会影响菌株的生长繁殖。含D-阿洛糖的富集肉汤可以改善菌株的分离并减少非目标细菌的生长,研究发现只有家系Ⅱ菌株可以利用D-阿洛糖作为生长的碳源,其余家系菌株均不能[63]。此外,家系Ⅱ菌株还可以代谢蔗糖[57]。研究菌株对物质的分解发现,ⅢB和ⅢC亚系分离株缺乏发酵鼠李糖的能力,但家系ⅢA对鼠李糖和乳酸则显示阳性结果[23]。这也从侧面说明不同家系菌株在碳源利用上存在一定的差异[57]。

  由于代谢组位于基因组和转录组的下游,因此不同家系菌株在基因组和转录组的差异会导致代谢组的不同。采用转录组学表明家系Ⅱ和家系Ⅰ菌株在磷酸盐代谢、脂质代谢和辅酶辅基代谢中存在不同的富集趋势[7]。基于全基因组分析菌株遗传关系时发现家系Ⅰ和家系Ⅱ菌株的部分基因座编码的醛糖1-表异构酶代谢途径存在差异[62],这表明不同家系菌株基因组和代谢之间保持高度保守性[57]。

  2.6 、单增李斯特菌进化家系致病性

  李斯特病的高死亡率促进了单增李斯特菌致病性研究,而菌株的致病性取决于各种毒力因子[64]。目前发现的毒力因子有李斯特致病岛家族(LIPI-1,LIPI-2,LIPI-3和 LIPI-4),蛋白质(表面蛋白(Internalin A、Internalin B)和P60蛋白[65])和转录调节因子[49,66]等,其中最主要的是李斯特致病岛1(LIPI-1)。各种毒力因子的致病机理有所差异,如转录激活因子PrfA负责调节和控制许多毒力基因的转录表达[42],inlAB操纵子编码的两个内部蛋白对于进入非吞噬细胞至关重要[66]。不同进化家系菌株的致病性差异还与毒力因子的分泌相关。作为最重要的转录调节因子,σB的存在影响着家系Ⅰ,Ⅱ和ⅢB菌株对人上皮Caco-2细胞的入侵[55]。不同家系菌株中的毒力基因也影响着菌株的致病性,编码Internalin蛋白的基因inlG,inlK和inlF 通常出现在家系Ⅱ菌株中[66]。同样,InlA蛋白(由inlA 基因编码)的存在会影响菌株穿越人肠道屏障[67],而拥有全长inlA 基因和LIPI-3/4的菌株通常会导致严重的李斯特病[68]。Chen等[69]利用全基因组测序技术(whole-genome sequencing,WGS)对即食食品分离株的inlA基因的提前终止密码子(premature stop codon,PMSC)测序,发现家系Ⅰ或带有全长inlA的分离株通常比家系Ⅱ或带有inlA PMSCs的菌株具有更大的毒力潜能。除毒力因子外,不同家系菌株的致病性可能和细胞壁的WTA相关[17]。

  不同家系菌株致病性强弱相差较大,大多数人类李斯特菌病的暴发是由含4种外毒素的家系Ⅰ菌株引起[70],这可能和其高度克隆的特性相关[32]。菌株进化中毒力会发生变化,这与毒力基因突变和相关蛋白丢失有关,研究发现家系Ⅱ菌株的毒力丧失可能与毒力基因(prfA,inlA和inlB等)的突变有关[71],表面蛋白的缺失同样会促使家系Ⅲ菌株毒力发生改变[72]。菌株致病性研究往往依赖于菌株分离,而菌株的分离获得与国家地域,饮食风俗,卫生条件和采样方法相关。Francisque等[73]对5大洲共300份分离株进行流行病学研究,发现很少有流行性菌株存在。在一些国家发现家系Ⅱ菌株引起的人类李斯特菌病要多于家系Ⅰ[74]。

  3 、单增李斯特菌不同进化家系的分型方法

  单增李斯特菌流行病学研究中,分离株的家系分型结果和菌株来源有着密切联系,对分离获得的菌株进行家系鉴别后,需要进一步研究分析不同来源分离株的关系以说明菌株的遗传特性,而这种解释往往依赖于合适的分型方法。将分型方法和生态位相结合可以为李斯特菌病防控和卫生服务建设提供参考。

  表2 单增李斯特部分家系分型方法
表2 单增李斯特部分家系分型方法

  注:aT,确定家系,U,未确定家系。表中数据以文章中有明显的分型方法为关键词进行搜索描述,同一分型方法选取有代表性的文章进行列表,文献数据查询来源于ISI-SCI(http://www.webofknowledge.com.cslg.naihes.cn/)。

  菌株精确的家系分型能为菌株种内遗传变异研究提供依据,尤其是菌株致病性方面[85]。最先用于家系分型的方法包括MEE,脉冲场凝胶电泳(pulsed-field gel electrophoresis,PFGE),基于限制性片段的DNA指纹分型技术(Rep PCR,AFLP和PFLP等)和核糖体分型等,其中PFGE使用范围广,区分能力强,被认为是分型的“金标准”,在分型中使用ApaⅠ和AscⅠ酶以提高分型能力。Valladares等[74]根据PFGE条带将菌株分为家系Ⅰ和家系Ⅱ。然而PFGE结果在不同实验室之间的解释和比较上难以一致且不易准确表明疾病暴发后菌株与环境之间的关联性[77]。为此,MLST[86,87],基于SNP的高分辨分解(high resolution melting,HRM)技术[88],多位点可变数目串联重复序列(multilocus variable number of tandem repeat analysis,MLVA)分型[89],多位点毒力基因序列分型(multi-virulence-locus sequence typing,MVLST)[90]及其他基于PCR的相关分型方法相继应用。Miya等[77]基于串联重复区的核苷酸序列,建立比MLST有更强区分能力的(multilocus tandem repeats sequence analysis,MLTSA)分型方法,成功将菌株分为家系Ⅰ和家系Ⅱ。马彦宁等[82]利用LIPI-1的等位基因特异性寡核苷酸,将菌株分为家系Ⅰ、家系Ⅱ和家系Ⅲ。王毅等[81]建立多重PCR方法用于4种家系和2个亚系菌株的快速区分鉴定。除此之外,利用不同家系菌株的特定SNP候选基因同样实现了不同家系的分型[48]。这些分型方法的建立和应用一定程度上加快了进化家系的遗传发育和致病性研究。但是MLST和MLVA方法缺乏对于大量疾病暴发株的区分能力[80,91]且MLVA的区分能力略弱于PFGE[80],ASO-PCR对单管反应确定菌株家系要求较高。为更好地进行家系菌株分型,WGS越来越多地作为开发基因分型方法的基础[92],其数据还可以用于毒力基因的检测和地理归属确定。WGS广泛的使用在跨区域、多来源的单增李斯特菌分离株家系分型、遗传多样性及致病性研究[93,94]。Chen等[69]通过WGS序列的核基因组MLST(core genome MLST,cgMLST)分型构建系统发育树对即食食品分株进行家系分型研究,结合WGS分析确认了家系Ⅰ,家系Ⅱ和家系Ⅲ的相关分离株。比较基因组学方法不仅在致病株遗传研究和家系分型中应用普遍[95],而且在探究对入侵宿主相关基因[96]和揭示不同家系菌株侵袭力、毒力[57]变化中同样使用广泛。除上述家系分型方法外,质谱和菌株表面蛋白也被用于家系分型。Koudelka等[97]利用MALDI-TOF MS对李斯特菌病和食品分离株进行家系分型,基于自建库的分型准确率为95.7%。Zhang等[98]将菌株的表面蛋白开发为单克隆抗体的抗原靶标,特定单克隆抗体对家系Ⅱ和Ⅰ菌株的特异性识别率为91.3%(表2)。

  基于多种家系分型结果,单增李斯特菌4种家系之间存在重叠的生态位关系。相较而言,家系Ⅰ菌株在人类和动物李斯特菌病中较多分离获得[99],家系Ⅱ菌株主要分离自食品及食品加工环境[100]。家系Ⅲ和家系Ⅳ菌株则较少分离获得[101],这可能和菌株的生物膜形成能力有关,使得加工过程产生的压力造成菌株的减少,从而较少的分离获得。总之,家系Ⅱ和家系Ⅰ菌株较常分离获得,因而常见于菌株流行病学和遗传发育研究。为更好表明家系分型的研究意义,有必要综合考虑菌株分离来源(国家或地区,分离位点,分离基质和分离季节等)。

  4 结语

  综上所述,单增李斯特菌的进化家系在表型、基因组及致病性等方面均存在差异,在食品安全领域,对分离菌株进行家系分析,不仅可以对食品生产加工过程中菌株的耐受能力和膜形成能力做出预先判断,为食品加工过程中菌株的消杀灭提供参考,同时,也可以了解不同家系菌株在食品中的分布规律,为食品中单增李斯特菌的风险识别提供基础数据。

  参考文献

  [1] HERNANDEZ-MILLIN A, PAYERAS-CIFRE A. What is new in listeriosis? [J]. BioMed Research Internationa, 2014, 2014(358051): 7. DOI:10.1155/2014/358051.
  [2] WOO HYUK‐JE, KANG JI‐HOON, LEE CHAE‐HUN, et al. Application of Cudrania tricuspidata leaf extract as a washing agent to inactivate Listeria monocytogenes on fresh‐cut romaine lettuce and kale [J]. International Journal of Food Science & Technology, 2019, 55(1): 276-282. DOI:10.1111/ijfs.14305.
  [3] FLILIPELLO V, MUGHINI-GRAS L, GALLINA S, et al. Attribution of Listeria monocytogenes human infections to food and animal sources in Northern Italy [J]. Food Microbiology, 2020, 89(103433. DOI:10.1016/j.fm.2020.103433.
  [4] STESSL B, SZAKMARY-BRANDLE K, VORBERG U, et al. Temporal analysis of the Listeria monocytogenes population structure in floor drains during reconstruction and expansion of a meat processing plant [J]. International Journal of Food Microbiology, 2020, 314(108360. DOI:10.1016/j.ijfoodmicro.2019.108360.
  [5] 李燕杰, 苏新国, 姚玉静, 等. 不同类型表面材料对单增李斯特菌生物被膜形成的影响 [J]. 郑州轻工业学院学报(自然科学版), 2015, 30(Z2): 33-37. DOI:10.3969/j.issn.2095-476X.2015.5/6.007.
  [6] PAPIC B, PATE M, FELIX B, et al. Genetic diversity of Listeria monocytogenes strains in ruminant abortion and rhombencephalitis cases in comparison with the natural environment [J]. BMC Microbiol, 2019, 19(1): 299. DOI:10.1186/s12866-019-1676-3.
  [7] LEE B. H, GARMYN D, GAL L, et al. Exploring Listeria monocytogenes Transcriptomes in Correlation with Divergence of Lineages and Virulence as Measured in Galleria mellonella [J]. Applied and Environmental Microbiology, 2019, 85(21): DOI:10.1128/AEM.01370-19.
  [8] MORANDI S, SILVETTI T, VEZZINI V, et al. How we can improve the antimicrobial performances of lactic acid bacteria? A new strategy to control Listeria monocytogenes in Gorgonzola cheese [J]. Food Microbiology, 2020, 90(103488. DOI:10.1016/j.fm.2020.103488.
  [9] KARTHIKEYAN R, GAYATHRI P, GUNASEKARAN P, et al. Comprehensive proteomic analysis and pathogenic role of membrane vesicles of Listeria monocytogenes serotype 4b reveals proteins associated with virulence and their possible interaction with host [J]. International Journal of Medical Microbiology, 2019, 309(3-4): 199-212. DOI:10.1016/j.ijmm.2019.03.008.
  [10] WANG Wenkai, ZHOU Xiujuan, SUO Yujuan, et al. Prevalence, serotype diversity, biofilm-forming ability and eradication of Listeria monocytogenes isolated from diverse foods in Shanghai, China [J]. Food Control, 2017, 73(1068-1073. DOI:10.1016/j.foodcont.2016.10.025.
  [11] VASILEV V, JAPHETH R, BREUER R, et al. A survey of Listeria monocytogenes strains, isolated from ready-to-eat foods in Israel over a period of 10 years, 1998–2007 [J]. Food Control, 2010, 21(8): 1179-1181. DOI:10.1016/j.foodcont.2010.01.015.
  [12] DOUMITH M, BUCHRIESER C, GLASER P, al. et. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR [J]. Journal of Clinical Microbiology, 2004, 42(8): 3819-3822. DOI:10.1128/JCM.42.8.3819-3822.2004.
  [13] 涂春田, 陈兆国, 汪洋, 等. 上海市鸡源单增李斯特菌株分离鉴定、血清分型、耐药性和生物被膜形成分析 [J]. 中国动物传染病学报, 2020, 1-11. http://h-s.kns.cnki.net.cslg.naihes.cn/kcms/detail/31.2031.S.20200211.1551.038.html.
  [14] 张正东, 张玲, 王红, 等. 自贡市2014年农贸市场食品中单增李斯特菌污染状况调查 [J]. 实用预防医学, 2019, 26(3): 264-267. DOI:10.3969/j.issn.1006-3110.2019.03.003.
  [15] 张晶, 白志军, 和鹏, 等. 广州市58株单增李斯特菌菌株特征分析 [J]. 现代预防医学, 2019, 46(5): 879-883. DOI:CNKI:SUN:XDYF.0.2019-05-026.
  [16] GIANFRANCESCHI M. V, D'OTTAVIO M. C, GATTUSO A, al. et. Distribution of serotypes and pulsotypes of Listeria monocytogenes from human, food and environmental isolates (Italy 2002-2005) [J]. Food Microbiology, 2009, 26(5): 520-526. DOI:10.1016/j.fm.2009.03.003.
  [17] SPERAS P. A, HAVELL E. A, HAMRICK T. S, et al. Listeria monocytogenes wall teichoic acid decoration in virulence and cell-to-cell spread [J]. Molecular Microbiology, 2016, 101(5): 714-730. DOI:10.1111/mmi.13353.
  [18] HAASE J. K, DIDELOT X, LECUIT M, et al. The ubiquitous nature of Listeria monocytogenes clones: a large-scale Multilocus Sequence Typing study [J]. Environ Microbiol, 2014, 16(2): 405-416. DOI:10.1111/1462-2920.12342.
  [19] WARD T. J., GORSKI L., BORUCKI M. K., et al. Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes [J]. J Bacteriol, 2004, 186(15): 4994-5002. DOI:10.1128/JB.186.15.4994-5002.2004.
  [20] TANG S, WIEDAMNN M, GARDNER A. L, al. et. Clonal Clustering Using 10-Gene Multilocus Sequence Typing Reveals an Association Between Genotype and Listeria monocytogenes Maximum Growth Rate in Defined Medium [J]. Foodborne Pathogens & Disease, 2015, 12(12): 972-982. DOI:10.1089/fpd.2015.2019.
  [21] C PIGFFARETI J, H KRESSEBUCH, M AESCHBACHER. Genetic Characterization of Clones of the Bacterium Listeria monocytogenes Causing Epidemic Disease [J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(10): 3818-3822. DOI:10.2307/33967.
  [22] M WIEDMANN, L BRUCE J, C KEATING, et al. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. [J]. Infection and Immunity, 1997, 65(7): 2707. DOI:10.1007/BF01713160.
  [23] ROBERTS A, NIGHTINGALE K, JEFFERS G, et al. Genetic and phenotypic characterization of Listeria monocytogenes lineage III [J]. Microbiology, 2006, 152(Pt 3): 685-693. DOI:10.1099/mic.0.28503-0.
  [24] LIU D, L LAWREENDCE M., WIEDMANN M, et al. Listeria monocytogenes subgroups IIIA, IIIB, and IIIC delineate genetically distinct populations with varied pathogenic potential [J]. Journal of Clinical Microbiology, 2006, 44(11): 4229-4233. DOI:10.1128/JCM.01032-06.
  [25] WARD TODED J, DUCEY THOMAS F, USGAARD THOMAS, et al. Multilocus Genotyping Assays for Single Nucleotide Polymorphism-Based Subtyping of Listeria monocytogenes Isolates [J]. Applied and Environmental Microbiology, 2008, 74(24): 7629-7642. DOI:10.1128/aem.01127-08.
  [26] H ORSI R, D BAKKER H C, M WIEDAMNN. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics [J]. International Journal of Medical Microbiology, 2011, 301(2): 79-96. DOI:10.1016/j.ijmm.2010.05.002.
  [27] H.C DEN BAKKER, BOWEN B. M, RODRIGUEZ-RIVERA L. D, al. et. FSL J1-208, a virulent uncommon phylogenetic lineage IV Listeria monocytogenes strain with a small chromosome size and a putative virulence plasmid carrying internalin-like genes [J]. Applied & Environmental Microbiology, 2012, 78(6): 1876-1889. DOI:10.1128/AEM.06969-11.
  [28] AALTO-ARANEDA M, PONTINEN A, PESONEN M, et al. Strain Variability of Listeria monocytogenes under NaCl Stress Elucidated by a High-Throughput Microbial Growth Data Assembly and Analysis Protocol [J]. Applied and Environmental Microbiology, 2020, 86(6): DOI:10.1128/AEM.02378-19.
  [29] MOHAMMADZADEH R, AZADEGEN A, KALANI B. S. Listeriolysin S may inhibit the anti-listerial properties of Lactobacillus plantarum [J]. Microbial Pathogenesis, 2019, 137(103744. DOI:10.1016/j.micpath.2019.103744.
  [30] Bergholz Teresa M den Bakker Henk C, Fortes Esther D,Boor Kathryn J,Wiedmann Martin. Salt Stress Phenotypes in Listeria monocytogenes Vary by Genetic Lineage and Temperature [J]. FOODBORNE PATHOGENS AND DISEASE, 2010, 7(12): DOI:10.1089/fpd.2010.0624.
  [31] STOLLEWERK KAKHARINA, CRUZ CRISTIONA D., FLETCHER GRAHAM, et al. The effect of mild preservation treatments on the invasiveness of different Listeria monocytogenes strains on Greenshell? mussels [J]. Food Control, 2017, 71(322-328. DOI:10.1016/j.foodcont.2016.07.012.
  [32] PIRONE-DAVIES C., CHEN Y., PIGHTLING A., et al. Genes significantly associated with lineage II food isolates of Listeria monocytogenes [J]. BMC Genomics, 2018, 19(1): 708. DOI:10.1186/s12864-018-5074-2.
  [33] MANSOB B, MELERO B, STESSL B, et al. The Response to Oxidative Stress in Listeria monocytogenes Is Temperature Dependent [J]. Microorganisms, 2020, 8(4): DOI:10.3390/microorganisms8040521.
  [34] COMBROUSE T, SADOVSKAYA I, FAILLE C, et al. Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions [J]. J Appl Microbiol, 2013, 114(4): 1120-1131. DOI:10.1111/jam.12127.
  [35] LEE B. H, COLE S, BADEL-BERCHOUX S, et al. Biofilm Formation of Listeria monocytogenes Strains Under Food Processing Environments and Pan-Genome-Wide Association Study [J]. Frontiers in Microbiology, 2019, 10(2698. DOI:10.3389/fmicb.2019.02698.
  [36] ?uláková Martina, Pazlarová Jarmila, Meyer Rikke Louise, et al. Distribution of extracellular DNA in Listeria monocytogenes biofilm [J]. Czech Journal of Food Sciences, 2019, 37(No. 6): 409-416. DOI:10.17221/9/2019-cjfs.
  [37] 王园, 孙琳珺, 程颖, 等. 食品加工环境胁迫因素对单增李斯特菌生物膜形成的影响研究进展 [J]. 食品科学, 2020, 1-13. DOI:10.7506/spkx1002-6630-20200702-034.
  [38] 王蕊盖阔, 刘梦齐, 蒋丽, 等. 原子力显微镜在细菌黏附力学研究中的应用 [J]. 国际口腔医学杂志, 2019, 46(6): 687- 692. DOI:10.7518/gjkq.2019080.
  [39] ESKHAN A. O, ABU-LAIL N. I. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes lineages' I and II environmental and epidemic strains [J]. J Colloid Interface Sci, 2013, 394(554-563. DOI:10.1016/j.jcis.2012.11.038.
  [40] 江玲丽, 陈健舜, 李爱云, 等. 单核细胞增多性李斯特菌弱毒株的生物学特性鉴定 [J]. 畜牧兽医学报, 2014, 45(2): 274-280. DOI:10.11843/j.issn.0366-6964.2014.02.016.
  [41] G TORSTEN HAIN R, BILLIONGLASER ANDRé. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes [J]. BMC Genomics, 2012, 13(1): DOI:10.1186/1471-2164-13-144.
  [42] AGUILAR-BULTET L., NICHOLSON P., RYCHENER L., et al. Genetic Separation of Listeria monocytogenes Causing Central Nervous System Infections in Animals [J]. Front Cell Infect Microbiol, 2018, 8(20): DOI:10.3389/fcimb.2018.00020.
  [43] CHEN Jianshun, CHEN Fan, CHENG Changyong, et al. Prevalence of the lmo0036-0043 gene cluster encoding arginine deiminase and agmatine deiminase systems in Listeria monocytogenes [J]. New Microbiologica, 2013, 36(2): 187. DOI:10.1016/j.procbio.2013.02.007.
  [44] AGUERO J. A, AKARSU H, AGUILAR-BULTET L, et al. Large-Scale Comparison of Toxin and Antitoxins in Listeria monocytogenes [J]. Toxins (Basel), 2020, 12(1): DOI:10.3390/toxins12010029.
  [45] ZHANG Yunyi, DONG Shilei, CHEN Honghu, et al. Prevalence, Genotypic Characteristics and Antibiotic Resistance of Listeria monocytogenes From Retail Foods in Bulk in Zhejiang Province, China [J]. Frontiers in Microbiology, 2019, 10(1710. DOI:10.3389/fmicb.2019.01710.
  [46] 苏乐斌, 李柏生, 谭海芳, 等. 基于全基因组测序的单核细胞增生李斯特菌食品分离株分子特征分析 [J]. 中国食品卫生杂志, 2019, 31(6): 522-527. DOI:CNKI:SUN:ZSPZ.0.2019-06-003.
  [47] Hanxin ZHAO, Jianshun CHEN, Chun FANG. Deciphering the biodiversity of Listeria monocytogenes lineage III strains by polyphasic approaches [J]. Journal of Microbiology, 2011, 49(5): 759-767. DOI:10.1007/s12275-011-1006-4.
  [48] XU Zhang, LI Ling, LI Zhiyong, et al. Mining Listeria monocytogenes single nucleotide polymorphism sites to identify the major serotypes using allele-specific multiplex PCR [J]. International Journal of Food Microbiology, 2020, 335(DOI:10.1016/j.ijfoodmicro.2020.108885.
  [49] MAURY M. M, CHENAL-FRANCISQUE V, BRACQ-DIEYE H, et al. Spontaneous Loss of Virulence in Natural Populations of Listeria monocytogenes [J]. Infection & Immunity, 2017, 85(11): DOI:10.1128/IAI.00541-17.
  [50] ZAMUDIO R, HAIGH R. D, RALPH J. D, et al. Lineage-specific evolution and gene flow in Listeria monocytogenes are independent of bacteriophages [J]. Environmental Microbiology, 2020, DOI:10.1111/1462-2920.15111.
  [51] M LIAO JINGQIU W, JASNA KOVAC. Genetic Stability and Evolution of the sigB Allele, Used for Listeria Sensu Stricto Subtyping and Phylogenetic Inference [J]. Applied and Environmental Microbiology, 2017, 83(12): DOI:10.1128/AEM.00306-17.
  [52] LOMONACO S, NUCERA D, FILIPELLO V. The evolution and epidemiology of Listeria monocytogenes in Europe and the United States [J]. Infect Genet Evol, 2015, 35(172-183. DOI:10.1016/j.meegid.2015.08.008.
  [53] G TORSTEN HAIN R, BILLION ANDRé, KUENNE CARSTEN TOBIAS. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes [J]. BioMed Central, 2013, 13(1): DOI:10.1186/1471-2164-13-144.
  [54] MRANHEIL M. A, BILLION A, et MOHAMED Wal. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages [J]. Nuclc Acids Research, 2011, 39(10): 4235-4248. DOI:10.1093/nar/gkr033.
  [55] OLIVER H. F, ORSI R. H, WIEDMANN M. Listeria monocytogenes {sigma}B has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains [J]. Applied & Environmental Microbiology, 2010, 76(13): 4216-4232. DOI:10.1128/AEM.00031-10.
  [56] GUARIGLIA-OROPEZA V, ORSI R. H, GULDIMANN C, et al. The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon [J]. Frontiers in Microbiology, 2018, 9(120): DOI:10.3389/fmicb.2018.00120.
  [57] MUCHAAMBA F, ESHWAR A. K, STEVENS M. J. A, et al. Variable Carbon Source Utilization, Stress Resistance, and Virulence Profiles Among Listeria monocytogenes Strains Responsible for Listeriosis Outbreaks in Switzerland [J]. Frontiers in Microbiology, 2019, 10(957. DOI:10.3389/fmicb.2019.00957.
  [58] DONALDSON J. R, NANDURI B, S.C URGESS. Comparative proteomic analysis of Listeria monocytogenes strains F2365 and EGD [J]. Applied and Environmental Microbiology, 2009, 75(2): 366-373. DOI:10.1128/AEM.01847-08.
  [59] OJIMA-KATO T, N YAMAMOTO, TAKAHASHI H, et al. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria [J]. PLoS One, 2016, 11(7): DOI:10.1371/journal.pone.0159730.
  [60] DUMAS E, MEUNIER B, BERDAGUE J. L. Comparative analysis of extracellular and intracellular proteomes of Listeria monocytogenes strains reveals a correlation between protein expression and serovar [J]. Applied and Environmental Microbiology, 2008, 74(23): 7399-7409. DOI:10.1128/AEM.00594-08.
  [61] QUEREDA J. J, RODRIGUEZ-GOMEZ I. M, MEZA-TORRES J, et al. Reassessing the role of internalin B in Listeria monocytogenes virulence using the epidemic strain F2365 [J]. Elsevier Sponsored Documents, 2019, 25(2): 252 e251-252 e254. DOI:10.1016/j.cmi.2018.08.022.
  [62] FERWERDA B, R MAURY M., BROUWER M. C, et al. Residual Variation Intolerance Score Detects Loci Under Selection in Neuroinvasive Listeria monocytogenes [J]. Frontiers in Microbiology, 2019, 10(2702. DOI:10.3389/fmicb.2019.02702.
  [63] Lu ZHANG, Yan WANG, Dongxin LIU, et al. Identification and Characterization of als Genes Involved in D-Allose Metabolism in Lineage II Strain of Listeria monocytogenes [J]. Frontiers in Microbiology, 2018, 9(621. DOI:10.3389/fmicb.2018.00621.
  [64] CAO Xiaolong, WANG Yi, WANG Yan, et al. Isolation and characterization of Listeria monocytogenes from the black-headed gull feces in Kunming, China [J]. Journal of Infection and Public Health, 2018, 11(1): 59-63. DOI:10.1016/j.jiph.2017.03.003.
  [65] 王旭. 基于比较基因组学和转录组学技术揭示单增李斯特菌毒力因子的研究 [D]. 上海市; 上海海洋大学, 2016,5-6.
  [66] TOLEDO V, DENAKKER H. C, HORMAZABAL J. C, et al. Genomic Diversity of Listeria monocytogenes Isolated from Clinical and Non-Clinical Samples in Chile [J]. Genes, 2018, 9(8): DOI:10.3390/genes9080396.
  [67] BIFULCO L., INGIANNI A., POMPEI R. An internalin a probe-based genosensor for Listeria monocytogenes detection and differentiation [J]. Biomed Res Int, 2013, 2013(640163. DOI:10.1155/2013/640163.
  [68] MAURY M. M, TSAI Y. H, CHARLIER C, et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity [J]. Nature Genetics, 2016, 48(3): 308-313. DOI:10.1038/ng.3501.
  [69] Yi CHEN, Yuhuan CHEN, REGIS POUILLOT, et al. Genetic diversity and profiles of genes associated with virulence and stress resistance among isolates from the 2010-2013 interagency Listeria monocytogenes market basket survey [J]. PLoS One, 2020, 15(4): e0231393. DOI:10.1371/journal.pone.0231393.
  [70] QUEREDA J. J, ANDERSSON C, COSSART P, et al. Role in virulence of phospholipases, listeriolysin O and listeriolysin S from epidemic Listeria monocytogenes using the chicken embryo infection model [J]. Veterinary Research, 2018, 49(1): 13-22. DOI:10.1186/s13567-017-0496-4.
  [71] G SYLVIE M ROCHE O, KEROUANTON ANNA?LLE. Polyphasic characterization and genetic relatedness of low-virulence and virulent Listeria monocytogenes isolates [J]. BMC Microbiology, 2012, 12(1): DOI:10.1186/1471-2180-12-304.
  [72] HAIN TORSTEN, GHAI ROHIT, BILLION ANDRE. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes [J]. BMC Genomics, 2012, 13(1): DOI:10.1186/1471-2164-13-144.
  [73] CHENAL-FRANCISQUE, LOPEZ VIVIANE, CANTINELLI JODIE, et al. Worldwide Distribution of Major Clones ofListeria monocytogenes [J]. Emerging Infectious Diseases, 2011, 17(6): 1110-1112. DOI:10.3201/eid1706.101778.
  [74] LOPEZ-VALLADARES G, DANIELSSON-THAM M. L, GOERING R. V, et al. Lineage II (Serovar 1/2a and 1/2c) Human Listeria monocytogenes Pulsed-Field Gel Electrophoresis Types Divided into PFGE Groups Using the Band Patterns Below 145.5 kb [J]. Foodborne Pathogens & Disease, 2017, 14(1): 8-16. DOI:10.1089/fpd.2016.2173.
  [75] KWONG J. C, MERCOULIA K., TOMITA T., et al. Prospective Whole-Genome Sequencing Enhances National Surveillance of Listeria monocytogenes [J]. Journal of Clinical Microbiology, 2016, 54(2): 333-342. DOI:10.1128/JCM.02344-15.
  [76] LI Zhen, PEREZ-OSORIO A, YU Wang, et al. Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in Washington State [J]. BMC Microbiol, 2017, 17(134): DOI:10.1186/s12866-017-1043-1.
  [77] MIYA S, TAKAHASHI H, KAMIMURA C. Highly discriminatory typing method for Listeria monocytogenes using polymorphic tandem repeat regions [J]. Journal of Microbiological Methods, 2012, 90(3): 285-291. DOI:10.1016/j.mimet.2012.05.023.
  [78] CRUZ C. D, PITMAN A. R, HARROW S. A, et al. Listeria monocytogenes associated with New Zealand seafood production and clinical cases: unique sequence types, truncated InlA, and attenuated invasiveness [J]. Appl Environ Microbiol, 2014, 80(4): 1489-1497. DOI:10.1128/AEM.03305-13.
  [79] Ping WANG, Hairong YANG, Yue HU, et al. Characterization of Listeria monocytogenes isolates in import food products of China from 8 provinces between 2005 and 2007 [J]. J Food Sci, 2012, 77(4): M212-216. DOI:10.1111/j.1750-3841.2011.02596.x.
  [80] CHENAL-FRANCISQUE V, DIANCOURT L, T CANTINELLII, et al. Optimized Multilocus variable-number tandem-repeat analysis assay and its complementarity with pulsed-field gel electrophoresis and multilocus sequence typing for Listeria monocytogenes clone identification and surveillance [J]. J Clin Microbiol, 2013, 51(6): 1868-1880. DOI:10.1128/JCM.00606-13.
  [81] 王毅, 王艳, 叶正兴, 等. Differentiation of 4 Listeria monocytogene phylogenetic lineages and 2 sublineages by a novel multiplex PCR [J]. 中国人兽共患病学报, 2013, 29(12): 1151-1156. DOI:10.3969/cjz.j.issn.1002-2694.2013.12.005.
  [82] 马彦宁, 赵悦, 郭云昌, 等. 即食食品中单核细胞增生李斯特菌的血清学分型和毒力基因分析 [J]. 中国食品卫生杂志, 2017, 29(1): 14-18. DOI:10.13590/j.cjfh.2017.01.004.
  [83] RIP DIANE, GOUWS, A PIETER. PCR-Restriction Fragment Length Polymorphism and Pulsed-Field Gel Electrophoresis Characterization of Listeria monocytogenes Isolates from Ready-to-Eat Foods, the Food Processing Environment, and Clinical Samples in South Africa [J]. Journal of Food Protection, 2020, 83(3): 518-533. DOI:10.4315/0362-028X.JFP-19-301.
  [84] TELLI NIHAT, G?NER AHMET, SOYER D?NMEZ FERDA, et al. Detection of the contamination sources of Listeria monocytogenes in pickled white cheese production process line and genotyping with the pulsed-field gel electrophoresis method [J]. Turkish Journal of Veterinary and Animal Sciences, 2016, 40(630-636. DOI:10.3906/vet-1511-59.
  [85] DOJIAD S, WEIGEL M, BARBUDDHE S, et al. Phylogenomic grouping of Listeria monocytogenes [J]. Can J Microbiol, 2015, 61(9): 637-646. DOI:10.1139/cjm-2015-0281.
  [86] SMITH A, HEARN J, TAYLOR C, et al. Listeria monocytogenes isolates from ready to eat plant produce are diverse and have virulence potential [J]. International Journal of Food Microbiology, 2019, 299(23-32. DOI:10.1016/j.ijfoodmicro.2019.03.013.
  [87] OXARAN V, LEE S. H. I, CHAUL L. T, et al. Listeria monocytogenes incidence changes and diversity in some Brazilian dairy industries and retail products [J]. Food Microbiology, 2017, 68(16-23. DOI:10.1016/j.fm.2017.06.012.
  [88] TAMBURRO M, RIPABELLI G. High Resolution Melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: a comprehensive review of the literature [J]. Annali Di Igiene Medicina Preventiva E Di Comunita, 2017, 29(4): 293-316. DOI:10.7416/ai.2017.2153.
  [89] MIYA S, KIMURA B, SATO M. Development of a multilocus variable-number of tandem repeat typing method for Listeria monocytogenes serotype 4b strains [J]. International Journal of Food Microbiology, 2008, 124(3): 239-249. DOI:10.1016/j.ijfoodmicro.2008.03.023.
  [90] KIM S. W, HAENDIGES J, KELLER E. N, et al. Genetic diversity and virulence profiles of Listeria monocytogenes recovered from bulk tank milk, milk filters, and milking equipment from dairies in the United States (2002 to 2014) [J]. PLoS One, 2018, 13(5): e0197053. DOI:10.1371/journal.pone.0197053.
  [91] RAGON M, WIRTH T, OLLANDT F, et al. A new perspective on Listeria monocytogenes evolution [J]. PLoS Pathog, 2008, 4(9): DOI:10.1371/journal.ppat.1000146.
  [92] Yuelan YIN, Hao YAO, SWAPNIL DOIJAD, et al. A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates [J]. Nature Communications, 2019, 10(1): 4283. DOI:10.1038/s41467-019-12072-1.
  [93] WHITMAN K. J, BONO J. L, CLAWSON M. L, et al. Genomic-based identification of environmental and clinical Listeria monocytogenes strains associated with an abortion outbreak in beef heifers [J]. BMC Veterinary Research, 2020, 16(1): 70. DOI:10.1186/s12917-020-2276-z.
  [94] CAMARGO AADERSON C, MOURA ALEXANDRA, AVILLAN COHNNRTSY, et al. Whole‐genome sequencing reveals Listeria monocytogenes diversity and allows identification of long‐term persistent strains in Brazil [J]. Environmental Microbiology, 2019, 21(12): 4478-4487. DOI:10.1111/1462-2920.14726.
  [95] LI Aiyun, XU Hao, LI Xiaoyu, et al. Genomic and Phenotypic Diversity of Listeria monocytogenes Causing Pregnancy-Associated Listeriosis from Zhejiang Province, China, 2016-2018 [J]. Infection and Drug Resistanc, 2020, 13(1179-1184. DOI:10.2147/IDR.S245305.
  [96] P CHEN, DENBARKKER, J KORLACH, et al. Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes [J]. Applied & Environmental Microbiology, 2017, 83(3): DOI:10.1128/AEM.02091-16.
  [97] KOUDELKA ?těpán, GELBí?ová Tereza, Procházková Markéta, et al. Lineage and serotype identification of Listeria monocytogenes by matrix-assisted laser desorption ionization-time of flight mass spectrometry [J]. Czech Journal of Food Sciences, 2019, 36(No. 6): 452-458. DOI:10.17221/87/2018-cjfs.
  [98] XY ZHANGthy, W BROOKS BRIAN, Hongsheng HUANG, et al. Identification of Surface Protein Biomarkers of Listeria monocytogenes via Bioinformatics and Antibody-Based Protein Detection Tools [J]. Applied & Environmental Microbiology, 2016, 82(17): 5465-5476. DOI:10.1128/AEM.00774-16.
  [99] MUARY MYLENE M, TSAI YU-HUAN, CHARLIER CAROLINE, et al. Erratum: Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity [J]. Nature Genetics, 2017, 49(6): DOI:10.1038/ng0617-970d.
  [100] TAMBURRO M, SAMMATCO M. L, RIPABELLI G. High resolution melting analysis for the characterization of lineage II Listeria monocytogenes serovars 1/2a and 1/2c based on single nucleotide polymorphisms identification within the Listeria Pathogenicity Island-1 and inlAB operon: a novel approach for epidemiological surveillance [J]. Journal of Applied Microbiology, 2018, DOI:10.1111/jam.14100.
  [101] COBAN A, PENNONE V, SUDAGIDEN M, et al. Prevalence, virulence characterization, and genetic relatedness of Listeria monocytogenes isolated from chicken retail points and poultry slaughterhouses in Turkey [J]. Brazilian Journal of Microbiolog, 2019, 50(4): 1063-1073. DOI:10.1007/s42770-019-00133-y.

上一篇:多杀性巴氏杆菌主要毒力因子最新研究
下一篇:没有了
重要提示:转载本站信息须注明来源:原创论文网,具体权责及声明请参阅网站声明。
阅读提示:请自行判断信息的真实性及观点的正误,本站概不负责。